

 1

 2

 3

 4

①

②

 5

 6

SE 素子 E = e

f1 + f2 … -fi= 0

e1 = e2 … = ei
0

e1, f1

e2, f2

ei, fi

SF 素子 F = f

R

R

R = e (z)

R = f (z)

R 素子

C 素子 C

SF

SE

1
e1, f1 ei, fi

e2, f2

I I 素子

TF 素子

GY 素子

0 接点

1 接点
f1 = f2 … = fi

e1 + e2 …- ei= 0

C = e (z)

L = f (z)

TF = 1/n

TF = n

GY = 1/m

GY = m

 e2 = e1/n , f1 = f2/n

f2 = e1/m , f1 = e2/m

e1 = n・e2 , f2 = n・f1

TF
e1, f1 e2, f2

TF
e1, f1 e2, f2

GY
e2, f2 e1, f1

GY
e2, f2 e1, f1

e1 = m・f2 , e2= m・f1

 7

SE SF

R

C I

0 1
P1, Q1 P2, Q2 P3, Q3

Pc, Qc Pi, Qi

Pr, Qr

 8

③

④

① ②

 9

①

 10

 11

 12

①

②

③

④

①

 13

①

②

 14

 15

 16

 17

 18

 19

 20

 21

「

 22

 23

●

●

 24

 25

 26

=

 27

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37



 38

 39

 40

 41

 42

 43

 44

 45

 46

 47

 48

)(ti

R

V
ti R)(

 i(t)dt

C
(t)VC

1

 49

 50

 51

 52

 53

 54

)(ti

)(tiRVR 

 dttV
L

ti L)(
1

)(

 55

 56

 57

 58

 59

 60

 61

・Fortran と C++の比較
以下に基本的な処理について，Fortran と C++の違いを示します．
また最後に Fortran，C++による例文をのせ，構文の違いを示します．

●加算(w=x+y) ●減算(w=x-y)
 Fortran W=X+Y Fortran W=X-Y
 C++ w=x+y; C++ w=x-y;

●乗算(w=x×y) ●除算(w=x÷y)
 Fortran W=X*Y Fortran W=X/Y
 C++ w=x*y; C++ w=x/y;

●剰余(x÷y=z･･･w) ●べき乗(w=x^y)
 Fortran W=MOD(X,Y) Fortran W=X**Y;
 C++ w=x%y; C++ w=pow(x,y);

●平方根(w=√X) ●指数関数(w=e^x)
 Fortran W=SQRT(X) Fortran W=EXP(X)
 C++ w=sqrt(x); C++ w=exp(x);

●自然対数関数(w=ln(x)) ●常用対数関数(w=log(x))
 Fortran W=LOG(X) Fortran W=LOG10(X)
 C++ w=log(x); C++ w=log10(x);

●正弦関数(w=sin(x)) ●余弦関数(w=cos(x))
 Fortran W=SIN(X) Fortran W=COS(X)
 C++ w=sin(x); C++ w=cos(x);

●正接関数(w=tan(x)) ●逆正弦関数(w=arcsin(x))
 Fortran W=TAN(X) Fortran W=ASIN(X)
 C++ w=tan(x); C++ w=asin(x);

●逆余弦関数(w=arccos(x)) ●逆正接関数(w=arctan(x))
 Fortran W=ACOS(X) Fortran W=ATAN(X)
 C++ w=acos(x); C++ w=atan(x);

●双曲線正弦関数 ●双曲線余弦関数
 Fortran W=SINH(X) Fortran W=COSH(X)
 C++ w=sinh(x); C++ w=cosh(x);

●双曲線正接関数 ●絶対値(引数が実数型の場合)
 Fortran W=TANH(X) Fortran W=ABS(X)
 C++ w=tanh(x); C++ w=fabs(x);

●ループ(0 から 10 までの足し算)
 Fortran DO 30 I=0,10
 J=J+I
 30 CONTINUE
 C++ for(i=0;i<=10;i++) j=j+i;

Fortran と C++の比較

 62

●条件文 1(もし a>b ならば･･･)
 Fortran IF(A.GT.B) THEN
 c ここに処理を書く
 END IF
 C++ if(a>b)
 {
 //ここに処理を書く
 }

●条件文 2(もし a<b ならば･･･)
 Fortran IF(A.LT.B) THEN
 c ここに処理を書く
 END IF
 C++ if(a>b)
 {
 //ここに処理を書く
 }

●条件文 3(もし a>=b ならば･･･)
 Fortran IF(A.GE.B) THEN
 c ここに処理を書く
 END IF
 C++ if(a>=b)
 {
 //ここに処理を書く
 }
●条件文 4(もし a=b ならば･･･)
 Fortran IF(A.EQ.B) THEN
 c ここに処理を書く
 END IF
 C++ if(a==b)
 {
 //ここに処理を書く
 }

●入力(変数 x を入力) ●出力(変数 x を出力)
 Fortran READ(5,*) X Fortran WRITE(6,*) 'X=',X
 C++ scanf("%f",&x); C++ printf("x=%f",x);

●データ型
 整数 Fortran INTEGER
 C++ int
 実数 Fortran REAL
 C++ float
 倍精度実数
 Fortran DOUBLE PRECISION
 C++ double
 文字型
 Fortran CHAEACTER
 C++ char

 63

●例文(シンプソンの積分)

シンプソンの積分公式をもちい，
24 xY  の x=0から x=2までの積分値を求める．

変数の説明
A,B 積分区間
M 積分範囲の分割数
H 区間幅
FUNC,T 被積分関数とその変数
SUMO,SUME 値を一時的に入れる変数
S 積分値を代入する変数

○Fortran の場合

C シンプソンの公式を用いた積分
C 変数の宣言
 INTEGER M
 REAL FUNC,A,B,H,S,T,SUMO,SUME

C 関数の定義
 FUNC(T)=SQRT(4-T**2)

C 変数の読み込み
 READ(5,100) M,A,B
100 FORMAT(I8,2F10.0)

C 区間幅の決定
 H=(B-A)/M
 SUMO=0
 SUME=0

C 積分計算
 DO 10 I=1,M/2-1
 SUMO=SUMO+FUNC(A+H*(2*I-1))
 SUME=SUME+FUNC(A+H*(2*I))
10 CONTINUE
 SUMO=SUMO+FUNC(B-H)
 S=(FUNC(A)+FUNC(B)+4*SUMO+2*SUME)*H/3

C 出力
 WRITE(6,200) 'M=',M,' H=',H,' S=',S
200 FORMAT(' ',A8,I8,A8,F10.7,A8,F10.7)
 END

C Fortran における実行結果
C 100,0,2
C M= 100 H= 0.0200000 S= 3.1411333

 64

○C++の場合

#include<stdio.h>
#include<math.h>

//Class の定義
class variable{
public:
 float s;
 float h;
 float func(float t){
 return (float)(sqrt(4-pow(t,2))); //関数の定義
 }
}simpson;

int main(void){
 //変数の定義
 int i;
 float sumo,sume,m,a,b;

 //入力
 scanf("%f %f %f",&m,&a,&b);

 //区間幅 simpson.h の決定
 simpson.h=(b-a)/m;
 sumo=0.0;
 sume=0.0;

 //積分値の計算
 for(i=1;i<=m/2-1;i++){
 sumo=sumo+simpson.func(a+simpson.h*(2*i-1));
 sume=sume+simpson.func(a+simpson.h*(2*i));
 }

 sumo=sumo+simpson.func(b-simpson.h);
 simpson.s=(simpson.func(a)+simpson.func(b)
 +4*sumo+2*sume)*simpson.h/3;

 //出力
 printf("M=%4.0f H=%f S=%f\n",m,simpson.h,simpson.s);
 return 0;
}

//c++における実行結果
//100 0 2
//M= 100 H= 0.0200000 S= 3.1411333

 65

 66

inputFKx
dt

dx
D

dt

xd
M 

2

2

inputFvdtKDv
dt

dv
M 

 67

 68

Fig 3.1 Bondgraph simulation tool

Fig 3.2 System dynamic characteristics

 69

3.2 支配方程式を表示するまでの流れ

3.2.1 支配方程式の作成

 支配方程式を作成するまでの手順を図 3.1 のボンドグラフを例にとり説明する．それを説明する過程では

ボンドグラフシミュレーションツールの内部での形と一般的な式の形の両方を示す．ボンドグラフシミュ

レーションツールの内部において支配方程式は(3.1)式のような形で格納されている．(3.1)式を一般的な式

の形にすると(3.2)式になる．

 DX[0]=(-C1(X[1])+E1()-R1(0,(-F1()+L1(X[0]))));

 DX[1]=(L1(X[0])-F1()); (3.1)

(3.2)

ただし， 1C は(2.2)式における   dttf の係数， 1L は(2.3)式における   dtte の係数， 1R は(2.7)式における

の  tf の係数である．  tE1 は入力エフォートの関数，  tF1 は入力フローの関数を表す．

ここで，図 3.1 におけるボンド番号及びパワー変数と 0x 及び 1x の関係を以下に示す．

(3.3)

(3.3)式を(3.1)式に代入すると(3.4)式になる．(3.4)式を一般的な式の形にすると(3.5)式になる．(3.4)式中の$は

プログラム内において積分記号を表すために用いる文字である．

 e2=(-C1$f5d+E1t-R1(-F1t+L1$e2d))

f5=(L1$e2d-F1t) (3.4)

(3.5)

括弧がついた状態では変形しづらいので，(3.4)式を展開すると(3.6)式になる．また，(3.6)式を一般的な形

にすると(3.7)式になる．

 e2=-C1$f5d+E1t+R1F1t-R1L1$e2d

f5=L1$e2d-F1t (3.6)

(3.7)








dtfx

dtex

51

20

     
  tFdteLf

dteLtFRtEdtfCe

1215

2111152








   
 tFdteLf

dteLRtFRtEdtfCe

1215

21111152








         

    tFxL
dt

xd

xLtFRtExC
dt

xd

101
1

0111111
0





 70

ここで，C 素子，I 素子の特性式((2.3)式，(2.4)式)より 2 番ボンド及び 5 番ボンドにおけるエフォートとフ

ローの関係を以下に示す．

(3.8)

(3.8)式を(3.6)式に代入すると(3.9)式，(3.10)式になる．また，(3.9)式，(3.10)式を一般的な式の形にすると(3.11)

式になる．(3.9)式及び(3.10)式中の#はプログラム内において微分記号を表すために用いる文字である．#の

次の数字が微分階数を表す．

f2#1=-L1e5+L1E1t+R1L1F1t-R1L1f2 (3.9)

e5#1=C1f2-C1F1t (3.10)

(3.11)

最後に，(3.9)式に(3.10)式を代入したものが図 3.1 のボンドグラフにおける一般的な支配方程式であり，そ

れを以下に示す．(3.12)式を一般的な式の形にすると(3.13)式になる．

f2#1=-L1C1$f2d+L1C1$F1td+L1E1t+R1L1F1t-R1L1f2 (3.12)

(3.13)

3.2.2 機械系の支配方程式の作成

図 3.1 のボンドグラフを機械系のモデルで表すと図 3.3 の質量，バネ，ダンパー系のモデルになる．機械
系においてフローは速度である．(3.12)式の速度を変位に変換したものを(3.15)式に示す．(3.15)式を一般
的な式の形にすると(3.16)式になる．速度から変位に変換する際の関係を(3.14)式に示す．

(3.14)

x2#2=-L1C1x2+L1C1X1t+L1E1t+R1L1F1t-R1L1x2#1 (3.15)

(3.16)

機械系では一般に，質量をm，ばね係数を K ，ダンパー粘性係数をC，力を F ，速度をV で表す．従
って，(3.17)に示す手順で(3.15)式を変形すると(3.18)式に示す支配方程式が導かれる．(3.18)式を一般的
な式の形にすると(3.19)式になる．

(3.17)

 m1x2#2=-K1x2+K1X1t+F1t+C1V1t-C1x2#1 (3.18)

5
1

5

2
1

2

1

1

e
C

f

f
L

e









   
 tFCfCe

fLRtFLRtELeLf

11215

21111111512








      211111111112112 fLRtFLRtELdttFCLdtfCLf  

   tXdttF

xf

11

22








      211111111112112 xLRtFLRtELtXCLxCLx  

111111111
1

,,,,
1

VFFECRKCm
L



 71

(3.19)

  1: SEtF

  1: SFtV

1: Im

1: RC 1:CK

Fig 3.3 Physical Model(Spring-Mass-Damper)

      21111112121 xCtVCtFtXKxKxm  

 72

3.2.3 電気系の支配方程式の作成

 ここでは図 3.4 の LCR 回路のモデルを用いて説明する．図 3.4 をボンドグラフで表したものが図 3.5であ

る．

 図 3.5 について(3.1)～(3.12)と同様の作業を行うと以下に示す式になる．(3.20)式を一般的な式の形にする

と(3.21)式になる．

 f2#1=L1E1t-R1L1f2-L1C1$f2d (3.20)

 (3.21)

電気系においてフローは電流である．(3.20)式のフローを電流を表す iに変換した式を以下に示す．(3.22)

Fig 3.4 Physical model(LCR circuit)

  1: SEtV

1: LL

1:CC

1: RR

Fig 3.5 Bondgraph model(LCR circuit)

   dtfCLfLRtELf 211211112


 73

式を一般的な形の式にすると(3.23)式になる．

 i2#1=L1E1t-R1L1i2-L1C1$i2 (3.22)

(3.23)

電気系では一般に，電圧をV で表現する．従って，(3.24)に示す手順で(3.22)式，(3.23)式で示される式を
変形し，1 階微分すると(3.25)式に示す支配方程式式が導かれる．(3.25)式を一般的な式の形にすると(3.26)
式になる．

(3.24)

 L1i2#2=V1#1t-R1i2#1-/C1i2 (3.25)

(3.26)

   dtiCLiLRtELi 211211112


11
1

1
1

1 ,
1

,
1

VE
C

C
L

L 

  2
1

21121

1
i

C
iRtViL  

 74

3.2.4 支配方程式の表示

 作成した支配方程式を表示する手順を以下に示す．図 3.6 は支配方程式を表示する手順のフローチャー

トである．分数の場合は分子，分母のそれぞれについて表示される領域の左上の座標を与え、再起を用い

て表示する．

1. 作成した支配方程式の文字列を 1 文字ずつ処理する

2. 文字が画像として登録した文字であるかどうか判定する

3. 画像として登録した文字であれば以下の作業を行う

 画像をロードする

 次の画像を表示するためのオフセットを設定する

 その画像の添え字の位置を設定する

 ロードした画像を表示する

4. 画像として登録した文字でなければそれを添え字と判断し，設定した位置に従い文字を表示する

5. 2~4 をすべての文字について行う

図 3.6 のように以下の文字列を表示する場合を例にとり手順を説明する．

f5=L1$e2d-F1t (3.27)

1. まず，'f'の文字について処理を行う

"f5=L1$e2d-F1t"

Is it suffix？

Show the character as suffix

depending on offset

Load the bitmap depending

on character

Set the offset to show next bitmap

Set the offset to show suffix

Show the loaded bitmap

Next character

YES

NO

‘f’

Fig 3.6 Flow chart to show governing equation

 75

2. 'f'は画像であると登録しているので以下の処理を行う

(ア) f の画像をロードする

(イ) 次の画像のオフセットを設定する

(ウ) f の画像における添え字の位置を設定する

(エ) f の画像を表示する

3. 次の文字の'5'について処理を行う

4. '5'は画像であると登録していないので，添え字であると判断する

5. '5'を 2 で設定した位置に従って文字として表示する

6. '='以降の文字についても同様に作業を行う

7. '$'の文字の場合は以下の処理を行う

(ア) 積分記号である  の画像をロードする

(イ) 次の画像のオフセットを設定する

(ウ) 積分記号である  の画像を表示する

8. 'd'の文字の場合は以下の処理を行う

(ア) dtの画像をロードする

(イ) 次の画像のオフセットを設定する

(ウ) dtの画像を表示する

9. 't'の文字の場合は以下の処理を行う

(ア)  t の画像をロードする

(イ) 次の画像のオフセットを設定する

(ウ)  t の画像を表示する

以上に示した手順でウィンドウに表示させると以下になる．

3.3 実行結果

3.3.1 機械系の実行結果

 機械系の支配方程式を開発したコードを用いて表示させ，その妥当性を検証する．図 3.8 は機械系のモデ

ルである．

Fig 3.7 Display equation on window

 76

このシステムの支配方程式を以下に示す．

(3.28)

また，図 3.8 のモデルからボンドグラフを作成すると以下になる．

さらに，図 3.9 をもとに開発したコードを用いて支配方程式を表示をさせると以下になる．

Fig 3.8 Physical model(Spring-Mass-Damper)

 tF 1m 2m 3m

1K 3K

1C 2C 3C

2x 3x1x

 tV

2K

Fig 3.9 Bondgraph model(Spring-Mass-Damper)

     
       
          0

0

333223332233

32221132221122

21121111






 dttVxKxxKtVxCxxCxm

xxKxxKxxCxxCxm

tFxxKxxCxm






 77

(3.28)式における変数と，図 3.10 における変数との対応関係を以下に示す．左辺が(3.28)式，右辺が図 3.10

である．

(3.29)

(3.29)式を(3.28)式に代入し，変形すると以下になる．(3.30)式は図 3.10 に示す支配方程式と同じである．

(3.30)

従って，図 3.10 に示す支配方程式は(3.28)式と同じであり，開発したコードは機械系の支配方程式を正しく

表示していることがわかる．

3.3.1 電気系の実行結果

 次に，電気系の支配方程式を開発したコードを用いて表示させ，その妥当性を検証する．図 3.11 は電気

系のモデルある．

Fig 3.10 Governing equation(Spring-Mass-Damper)

   
   tXdttV

tFtF

xx

xx

xx

1

1

163

92

21










 

    16292131631631392162163

91211629292162219192

91212191121

xCxCtVCxCxKtXKxKxKxm

xCxCxCxCxKxKxKxKxm

xCxCxKxKtFxm











 78

このシステムの支配方程式を以下に示す．

(3.31)

また，図 3.11 からボンドグラフを作成すると以下になる．

さらに，図 3.12 をもとに開発したコードを用いて支配方程式を表示させると以下になる．

2L

 tV

1L

1R 2R 1C 2C

Fig 3.11 Physical model(LCR circuit)

1i 2i

Fig 3.12 Bondgraph model(LCR circuit)

 

2
2

1
1

2
22

2
22

2
22

1
1

12

1
1

1
1

11

1
11

11

1

i
C

i
C

i
CR

L
iL

i
CL

L
i

CL

L
i

C
i

CR

L
tViL









 79

(3.31)式における変数と，図 3.13 における変数の対応関係を以下に示す．左辺が(3.31)式，右辺が図 3.13 で

ある．

(3.32)

(3.32)式を(3.31)式に代入すると以下になる．(3.33)式は図 3.13 に示す支配方程式と同じである．

(3.33)

従って，図 3.13 に示す支配方程式と(3.31)式は同じであり，開発したコードは電気系の支配方程式を正しく

表示していることがわかる．

Fig 3.13 Governing equation(LCR circuit model)

   tVtV

ii

ii

1

102

51






 

10
22

10
22

5
12

10

10
22

5
12

5
11

5
11

1
1

5

111

11111

i
CR

i
CL

i
CL

i

i
CL

i
CL

i
CR

i
CL

tV
L

i









 80

 81

 82

 83

